Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Microbes Infect ; : 105142, 2023 Apr 18.
Article in English | MEDLINE | ID: covidwho-2298519

ABSTRACT

Human Angiotensin-Converting Enzyme 2 (hACE2) is the major receptor enabling host cell invasion by SARS-CoV-2 via interaction with Spike. The murine ACE2 does not interact efficiently with SARS-CoV-2 Spike and therefore the laboratory mouse strains are not permissive to SARS-CoV-2 replication. Here, we generated new hACE2 transgenic mice, which harbor the hACE2 gene under the human keratin 18 promoter, in "HHD-DR1" background. HHD-DR1 mice are fully devoid of murine Major Histocompatibility Complex (MHC) molecules of class-I and -II and express only MHC molecules from Human Leukocyte Antigen (HLA) HLA 02.01, DRA01.01, DRB1.01.01 alleles, widely expressed in human populations. We selected three transgenic strains, with various hACE2 mRNA expression levels and distinctive profiles of lung and/or brain permissiveness to SARS-CoV-2 replication. These new hACE2 transgenic strains display high permissiveness to the replication of SARS-CoV-2 Omicron sub-variants, while the previously available B6.K18-ACE22Prlmn/JAX mice have been reported to be poorly susceptible to infection with Omicron. As a first application, one of these MHC- and ACE2-humanized strains was successfully used to show the efficacy of a lentiviral-based COVID-19 vaccine.

2.
Pharmaceutics ; 15(3)2023 Mar 05.
Article in English | MEDLINE | ID: covidwho-2273942

ABSTRACT

Lentiviral vectors are among the most effective viral vectors for vaccination. In clear contrast to the reference adenoviral vectors, lentiviral vectors have a high potential for transducing dendritic cells in vivo. Within these cells, which are the most efficient at activating naive T cells, lentiviral vectors induce endogenous expression of transgenic antigens that directly access antigen presentation pathways without the need for external antigen capture or cross-presentation. Lentiviral vectors induce strong, robust, and long-lasting humoral, CD8+ T-cell immunity and effective protection against several infectious diseases. There is no pre-existing immunity to lentiviral vectors in the human population and the very low pro-inflammatory properties of these vectors pave the way for their use in mucosal vaccination. In this review, we have mainly summarized the immunological aspects of lentiviral vectors, their recent optimization to induce CD4+ T cells, and our recent data on lentiviral vector-based vaccination in preclinical models, including prophylaxis against flaviviruses, SARS-CoV-2, and Mycobacterium tuberculosis.

3.
Vaccines (Basel) ; 11(1)2022 Dec 21.
Article in English | MEDLINE | ID: covidwho-2236640

ABSTRACT

Following the breakthrough of numerous severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants in recent months and the incomplete efficiency of the currently available vaccines, development of more effective vaccines is desirable. Non-integrative, non-cytopathic and non-inflammatory lentiviral vectors elicit sterilizing prophylaxis against SARS-CoV-2 in preclinical animal models and are particularly suitable for mucosal vaccination, which is acknowledged as the most effective in reducing viral transmission. Here, we demonstrate that a single intranasal administration of a vaccinal lentiviral vector encoding a stabilized form of the original SARS-CoV-2 Spike glycoprotein induces full-lung protection of respiratory tracts and strongly reduces pulmonary inflammation in the susceptible Syrian golden hamster model against the prototype SARS-CoV-2. In addition, we show that a lentiviral vector encoding stabilized Spike of SARS-CoV-2 Beta variant (LV::SBeta-2P) prevents pathology and reduces infectious viral loads in lungs and nasal turbinates following inoculation with the SARS-CoV-2 Omicron variant. Importantly, an intranasal boost with LV::SBeta-2P improves cross-seroneutralization much better in LV::SBeta-2P-primed hamsters than in their counterparts primed with an LV-encoding Spike from the ancestral SARS-CoV-2. These results strongly suggest that an immune imprint with the original Spike sequence has a negative impact on cross-protection against new variants. Our results tackle the issue of vaccine effectiveness in people who have already been vaccinated and have vanished immunity and indicate the efficiency of LV-based intranasal vaccination, either as a single dose or as booster.

4.
Ann Rheum Dis ; 81(12): 1695-1703, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1992983

ABSTRACT

OBJECTIVES: Type-I interferons (IFNs-I) have potent antiviral effects. IFNs-I are also overproduced in patients with systemic lupus erythematosus (SLE). Autoantibodies (AAbs) neutralising IFN-α, IFN-ß and/or IFN-ω subtypes are strong determinants of hypoxemic COVID-19 pneumonia, but their impact on inflammation remains unknown. METHODS: We retrospectively analysed a monocentric longitudinal cohort of 609 patients with SLE. Serum AAbs against IFN-α were quantified by ELISA and functionally assessed by abolishment of Madin-Darby bovine kidney cell protection by IFN-α2 against vesicular stomatitis virus challenge. Serum-neutralising activity against IFN-α2, IFN-ß and IFN-ω was also determined with a reporter luciferase activity assay. SARS-CoV-2 antibody responses were measured against wild-type spike antigen, while serum-neutralising activity was assessed against the SARS-CoV-2 historical strain and variants of concerns. RESULTS: Neutralising and non-neutralising anti-IFN-α antibodies are present at a frequency of 3.3% and 8.4%, respectively, in individuals with SLE. AAbs neutralising IFN-α, unlike non-neutralising AAbs, are associated with reduced IFN-α serum levels and a reduced likelihood to develop active disease. However, they predispose patients to an increased risk of herpes zoster and severe COVID-19 pneumonia. Severe COVID-19 pneumonia in patients with SLE is mostly associated with combined neutralisation of different IFNs-I. Finally, anti-IFN-α AAbs do not interfere with COVID-19 vaccine humoral immunogenicity. CONCLUSION: The production of non-neutralising and neutralising anti-IFN-I antibodies in SLE is likely to be a consequence of SLE-associated high IFN-I serum levels, with a beneficial effect on disease activity, yet a greater viral risk. This finding reinforces the recommendations for vaccination against SARS-CoV-2 in SLE.


Subject(s)
COVID-19 , Herpes Zoster , Lupus Erythematosus, Systemic , Humans , Cattle , Animals , Autoantibodies , COVID-19 Vaccines , Retrospective Studies , SARS-CoV-2 , Interferon-alpha , Interferon-beta
5.
Mol Ther ; 30(9): 2984-2997, 2022 09 07.
Article in English | MEDLINE | ID: covidwho-1805354

ABSTRACT

As the coronavirus disease 2019 (COVID-19) pandemic continues and new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern emerge, the adaptive immunity initially induced by the first-generation COVID-19 vaccines starts waning and needs to be strengthened and broadened in specificity. Vaccination by the nasal route induces mucosal, humoral, and cellular immunity at the entry point of SARS-CoV-2 into the host organism and has been shown to be the most effective for reducing viral transmission. The lentiviral vaccination vector (LV) is particularly suitable for this route of immunization owing to its non-cytopathic, non-replicative, and scarcely inflammatory properties. Here, to set up an optimized cross-protective intranasal booster against COVID-19, we generated an LV encoding stabilized spike of SARS-CoV-2 Beta variant (LV::SBeta-2P). mRNA vaccine-primed and -boosted mice, with waning primary humoral immunity at 4 months after vaccination, were boosted intranasally with LV::SBeta-2P. A strong boost effect was detected on cross-sero-neutralizing activity and systemic T cell immunity. In addition, mucosal anti-spike IgG and IgA, lung-resident B cells, and effector memory and resident T cells were efficiently induced, correlating with complete pulmonary protection against the SARS-CoV-2 Delta variant, demonstrating the suitability of the LV::SBeta-2P vaccine candidate as an intranasal booster against COVID-19. LV::SBeta-2P vaccination was also fully protective against Omicron infection of the lungs and central nervous system, in the highly susceptible B6.K18-hACE2IP-THV transgenic mice.


Subject(s)
COVID-19 , Viral Vaccines , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Lung , Mice , Mucous Membrane , SARS-CoV-2/genetics , Vaccination , Vaccines, Synthetic , mRNA Vaccines
6.
Front Immunol ; 13: 790334, 2022.
Article in English | MEDLINE | ID: covidwho-1715001

ABSTRACT

The capacity of pre-existing immunity to human common coronaviruses (HCoV) to cross-protect against de novo COVID-19is yet unknown. In this work, we studied the sera of 175 COVID-19 patients, 76 healthy donors and 3 intravenous immunoglobulins (IVIG) batches. We found that most COVID-19 patients developed anti-SARS-CoV-2 IgG antibodies before IgM. Moreover, the capacity of their IgGs to react to beta-HCoV, was present in the early sera of most patients before the appearance of anti-SARS-CoV-2 IgG. This implied that a recall-type antibody response was generated. In comparison, the patients that mounted an anti-SARS-COV2 IgM response, prior to IgG responses had lower titres of anti-beta-HCoV IgG antibodies. This indicated that pre-existing immunity to beta-HCoV was conducive to the generation of memory type responses to SARS-COV-2. Finally, we also found that pre-COVID-19-era sera and IVIG cross-reacted with SARS-CoV-2 antigens without neutralising SARS-CoV-2 infectivity in vitro. Put together, these results indicate that whilst pre-existing immunity to HCoV is responsible for recall-type IgG responses to SARS-CoV-2, it does not lead to cross-protection against COVID-19.


Subject(s)
Betacoronavirus/physiology , COVID-19/immunology , Common Cold/immunology , Immunoglobulins, Intravenous/therapeutic use , SARS-CoV-2/physiology , Aged , Aged, 80 and over , Antibodies, Neutralizing/metabolism , Antibodies, Viral/metabolism , Antigens, Viral/immunology , COVID-19/mortality , COVID-19/therapy , Cross Reactions , Female , Humans , Immunity, Heterologous , Immunoglobulin G/metabolism , Immunoglobulin M/metabolism , Immunologic Memory , Male , Middle Aged , Survival Analysis
7.
EMBO Mol Med ; 13(12): e14459, 2021 12 07.
Article in English | MEDLINE | ID: covidwho-1468845

ABSTRACT

COVID-19 vaccines already in use or in clinical development may have reduced efficacy against emerging SARS-CoV-2 variants. In addition, although the neurotropism of SARS-CoV-2 is well established, the vaccine strategies currently developed have not taken into account protection of the central nervous system. Here, we generated a transgenic mouse strain expressing the human angiotensin-converting enzyme 2, and displaying unprecedented brain permissiveness to SARS-CoV-2 replication, in addition to high permissiveness levels in the lung. Using this stringent transgenic model, we demonstrated that a non-integrative lentiviral vector, encoding for the spike glycoprotein of the ancestral SARS-CoV-2, used in intramuscular prime and intranasal boost elicits sterilizing protection of lung and brain against both the ancestral virus, and the Gamma (P.1) variant of concern, which carries multiple vaccine escape mutations. Beyond induction of strong neutralizing antibodies, the mechanism underlying this broad protection spectrum involves a robust protective T-cell immunity, unaffected by the recent mutations accumulated in the emerging SARS-CoV-2 variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Antibodies, Viral , Brain/metabolism , COVID-19 Vaccines , Humans , Mice , Mice, Transgenic , Spike Glycoprotein, Coronavirus/metabolism
8.
Ann Rheum Dis ; 81(4): 575-583, 2022 04.
Article in English | MEDLINE | ID: covidwho-1450597

ABSTRACT

OBJECTIVES: Our aim was to evaluate systemic lupus erythematosus (SLE) disease activity and SARS-CoV-2-specific immune responses after BNT162b2 vaccination. METHODS: In this prospective study, disease activity and clinical assessments were recorded from the first dose of vaccine until day 15 after the second dose in 126 patients with SLE. SARS-CoV-2 antibody responses were measured against wild-type spike antigen, while serum-neutralising activity was assessed against the SARS-CoV-2 historical strain and variants of concerns (VOCs). Vaccine-specific T cell responses were quantified by interferon-γ release assay after the second dose. RESULTS: BNT162b2 was well tolerated and no statistically significant variations of BILAG (British Isles Lupus Assessment Group) and SLEDAI (SLE Disease Activity Index) scores were observed throughout the study in patients with SLE with active and inactive disease at baseline. Mycophenolate mofetil (MMF) and methotrexate (MTX) treatments were associated with drastically reduced BNT162b2 antibody response (ß=-78, p=0.007; ß=-122, p<0.001, respectively). Anti-spike antibody response was positively associated with baseline total immunoglobulin G serum levels, naïve B cell frequencies (ß=2, p=0.018; ß=2.5, p=0.003) and SARS-CoV-2-specific T cell response (r=0.462, p=0.003). In responders, serum neutralisation activity decreased against VOCs bearing the E484K mutation but remained detectable in a majority of patients. CONCLUSION: MMF, MTX and poor baseline humoral immune status, particularly low naïve B cell frequencies, are independently associated with impaired BNT162b2 mRNA antibody response, delineating patients with SLE who might need adapted vaccine regimens and follow-up.


Subject(s)
Antirheumatic Agents/adverse effects , BNT162 Vaccine/immunology , Immunity, Humoral/drug effects , Lupus Erythematosus, Systemic/immunology , SARS-CoV-2/immunology , Adult , Antibodies, Viral/immunology , Antirheumatic Agents/immunology , COVID-19/prevention & control , Female , Humans , Immunogenicity, Vaccine/drug effects , Lupus Erythematosus, Systemic/drug therapy , Lupus Erythematosus, Systemic/virology , Male , Methotrexate/adverse effects , Methotrexate/immunology , Middle Aged , Mycophenolic Acid/adverse effects , Mycophenolic Acid/immunology , Prospective Studies , Severity of Illness Index
9.
EBioMedicine ; 70: 103495, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1322073

ABSTRACT

BACKGROUND: Children are underrepresented in the COVID-19 pandemic and often experience milder disease than adolescents and adults. Reduced severity is possibly due to recent and more frequent seasonal human coronaviruses (HCoV) infections. We assessed the seroprevalence of SARS-CoV-2 and seasonal HCoV specific antibodies in a large cohort in north-eastern France. METHODS: In this cross-sectional seroprevalence study, serum samples were collected from children and adults requiring hospital admission for non-COVID-19 between February and August 2020. Antibody responses to SARS-CoV-2 and seasonal HCoV (229E, HKU1, NL63, OC43) were assessed using a bead-based multiplex assay, Luciferase-Linked ImmunoSorbent Assay, and a pseudotype neutralisation assay. FINDINGS: In 2,408 individuals, seroprevalence of SARS-CoV-2-specific antibodies was 7-8% with three different immunoassays. Antibody levels to seasonal HCoV increased substantially up to the age of 10. Antibody responses in SARS-CoV-2 seropositive individuals were lowest in adults 18-30 years. In SARS-CoV-2 seronegative individuals, we observed cross-reactivity between antibodies to the four HCoV and SARS-CoV-2 Spike. In contrast to other antibodies to SARS-CoV-2, specific antibodies to sub-unit 2 of Spike (S2) in seronegative samples were highest in children. Upon infection with SARS-CoV-2, antibody levels to Spike of betacoronavirus OC43 increased across the whole age spectrum. No SARS-CoV-2 seropositive individuals with low levels of antibodies to seasonal HCoV were observed. INTERPRETATION: Our findings underline significant cross-reactivity between antibodies to SARS-CoV-2 and seasonal HCoV, but provide no significant evidence for cross-protective immunity to SARS-CoV-2 infection due to a recent seasonal HCoV infection. In particular, across all age groups we did not observe SARS-CoV-2 infected individuals with low levels of antibodies to seasonal HCoV. FUNDING: This work was supported by the « URGENCE COVID-19 ¼ fundraising campaign of Institut Pasteur, by the French Government's Investissement d'Avenir program, Laboratoire d'Excellence Integrative Biology of Emerging Infectious Diseases (Grant No. ANR-10-LABX-62-IBEID), and by the REACTing (Research & Action Emerging Infectious Diseases), and by the RECOVER project funded by the European Union's Horizon 2020 research and innovation programme under grant agreement No. 101003589, and by a grant from LabEx IBEID (ANR-10-LABX-62-IBEID).


Subject(s)
COVID-19/immunology , Immunity, Humoral/immunology , SARS-CoV-2/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Viral/immunology , Child , Child, Preschool , Clinical Trials as Topic , Cross Reactions/immunology , Cross-Sectional Studies , Female , France , Humans , Infant , Infant, Newborn , Male , Middle Aged , Pandemics/prevention & control , Seasons , Seroepidemiologic Studies , Spike Glycoprotein, Coronavirus/immunology , Young Adult
10.
Nat Commun ; 12(1): 3025, 2021 05 21.
Article in English | MEDLINE | ID: covidwho-1237997

ABSTRACT

Assessment of the cumulative incidence of SARS-CoV-2 infections is critical for monitoring the course and extent of the COVID-19 epidemic. Here, we report estimated seroprevalence in the French population and the proportion of infected individuals who developed neutralising antibodies at three points throughout the first epidemic wave. Testing 11,000 residual specimens for anti-SARS-CoV-2 IgG and neutralising antibodies, we find nationwide seroprevalence of 0.41% (95% CI: 0.05-0.88) mid-March, 4.14% (95% CI: 3.31-4.99) mid-April and 4.93% (95% CI: 4.02-5.89) mid-May 2020. Approximately 70% of seropositive individuals have detectable neutralising antibodies. Infection fatality rate is 0.84% (95% CI: 0.70-1.03) and increases exponentially with age. These results confirm that the nationwide lockdown substantially curbed transmission and that the vast majority of the French population remained susceptible to SARS-CoV-2 in May 2020. Our study shows the progression of the first epidemic wave and provides a framework to inform the ongoing public health response as viral transmission continues globally.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Viral/blood , COVID-19/epidemiology , COVID-19/virology , Child , Child, Preschool , Epidemics , Female , France/epidemiology , Humans , Infant , Infant, Newborn , Male , Middle Aged , Prevalence , SARS-CoV-2/physiology , Seroepidemiologic Studies , Young Adult
11.
Lancet Public Health ; 6(4): e202-e209, 2021 04.
Article in English | MEDLINE | ID: covidwho-1199200

ABSTRACT

BACKGROUND: During the COVID-19 lockdown period from March 17 to May 11, 2020, French authorities in Paris and its suburbs relocated people experiencing recurrent homelessness to emergency shelters, hotels, and large venues. A serological survey was done at some of these locations to assess the COVID-19 exposure prevalence in this group. METHODS: We did a cross-sectional seroprevalence study at food distribution sites, emergency shelters, and workers' residences that were provided medical services by Médecins Sans Frontières in Paris and Seine-Saint-Denis in the Ile-de-France region. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody seropositivity was detected by Luciferase-Linked Immunosorbent Assay and Pseudo Neutralization Test. Sociodemographic and exposure related information was collected via a verbal questionnaire to analyse risk factors and associations with various COVID-19 symptoms. FINDINGS: Between June 23 and July 2, 2020, 426 (52%) of 818 individuals recruited tested positive in 14 sites. Seroprevalence varied significantly by type of recruitment site (χ2 p<0·0001), being highest among those living in workers' residences (88·7%, 95% CI 81·8-93·2), followed by emergency shelters (50·5%, 46·3-54·7), and food distribution sites (27·8%, 20·8-35·7). More than two thirds of COVID-19 seropositive individuals (68%, 95% CI 64·2-72·2; 291 of 426) did not report any symptoms during the recall period. COVID-19 seropositivity was strongly associated with overcrowding (medium density: adjusted odds ratio [aOR] 2·7, 95% CI 1·5-5·1, p=0·0020; high density: aOR 3·4, 1·7-6·9, p<0·0001). INTERPRETATION: These results show high exposure to SARS-CoV-2 with important variations between those at different study sites. Living in crowded conditions was the strongest factor associated with exposure level. This study underscores the importance of providing safe, uncrowded accommodation, alongside adequate testing and public health information. FUNDING: Médecins Sans Frontières, Epicentre, Institut Pasteur's URGENCE nouveau coronavirus fund, Total Foundation.


Subject(s)
COVID-19/epidemiology , Environmental Exposure/statistics & numerical data , Ill-Housed Persons/statistics & numerical data , Adult , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , Paris/epidemiology , Risk Factors , Seroepidemiologic Studies
12.
Cell Rep Med ; 2(5): 100275, 2021 05 18.
Article in English | MEDLINE | ID: covidwho-1193507

ABSTRACT

Many SARS-CoV-2-infected individuals remain asymptomatic. Little is known about the extent and quality of their antiviral humoral response. Here, we analyze antibody functions in 52 asymptomatic infected individuals, 119 mildly symptomatic, and 21 hospitalized patients with COVID-19. We measure anti-spike immunoglobulin G (IgG), IgA, and IgM levels with the S-Flow assay and map IgG-targeted epitopes with a Luminex assay. We also evaluate neutralization, complement deposition, and antibody-dependent cellular cytotoxicity (ADCC) using replication-competent SARS-CoV-2 or reporter cell systems. We show that COVID-19 sera mediate complement deposition and kill infected cells by ADCC. Sera from asymptomatic individuals neutralize the virus, activate ADCC, and trigger complement deposition. Antibody levels and functions are lower in asymptomatic individuals than they are in symptomatic cases. Antibody functions are correlated, regardless of disease severity. Longitudinal samplings show that antibody functions follow similar kinetics of induction and contraction. Overall, asymptomatic SARS-CoV-2 infection elicits polyfunctional antibodies neutralizing the virus and targeting infected cells.


Subject(s)
Antibodies, Viral/blood , COVID-19/pathology , Spike Glycoprotein, Coronavirus/immunology , Adolescent , Adult , Antibodies, Viral/immunology , Antibody-Dependent Cell Cytotoxicity , Antigen-Antibody Reactions , Asymptomatic Diseases , COVID-19/virology , Complement System Proteins/metabolism , Epitopes/immunology , Female , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Killer Cells, Natural/immunology , Male , Middle Aged , Neutralization Tests , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Severity of Illness Index , Young Adult
13.
Eur J Immunol ; 51(1): 180-190, 2021 01.
Article in English | MEDLINE | ID: covidwho-1023283

ABSTRACT

Although the COVID-19 pandemic peaked in March/April 2020 in France, the prevalence of infection is barely known. Using high-throughput methods, we assessed herein the serological response against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) of 1847 participants working in three sites of an institution in Paris conurbation. In May-July 2020, 11% (95% confidence interval [CI]: 9.7-12.6) of serums were positive for IgG against the SARS-CoV-2 N and S proteins, and 9.5% (95% CI: 8.2-11.0) were neutralizer in pseudo-typed virus assays. The prevalence of seroconversion was 11.6% (95% CI: 10.2-13.2) when considering positivity in at least one assay. In 5% of RT-qPCR positive individuals, no systemic IgGs were detected. Among immune individuals, 21% had been asymptomatic. Anosmia (loss of smell) and ageusia (loss of taste) occurred in 52% of the IgG-positive individuals and in 3% of the negative ones. In contrast, 30% of the anosmia-ageusia cases were seronegative, suggesting that the true prevalence of infection may have reached 16.6%. In sera obtained 4-8 weeks after the first sampling, anti-N and anti-S IgG titers and neutralization activity in pseudo-virus assay declined by 31%, 17%, and 53%, resulting thus in half-life of 35, 87, and 28 days, respectively. The population studied is representative of active workers in Paris. The short lifespan of the serological systemic responses suggests an underestimation of the true prevalence of infection.


Subject(s)
Antibodies, Viral/blood , COVID-19/blood , COVID-19/immunology , Adult , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/epidemiology , Female , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Male , Pandemics , Paris/epidemiology , Seroepidemiologic Studies , Time Factors
14.
Cell Host Microbe ; 29(2): 236-249.e6, 2021 02 10.
Article in English | MEDLINE | ID: covidwho-978240

ABSTRACT

To develop a vaccine candidate against coronavirus disease 2019 (COVID-19), we generated a lentiviral vector (LV) eliciting neutralizing antibodies against the Spike glycoprotein of SARS-CoV-2. Systemic vaccination by this vector in mice, in which the expression of the SARS-CoV-2 receptor hACE2 has been induced by transduction of respiratory tract cells by an adenoviral vector, confers only partial protection despite high levels of serum neutralizing activity. However, eliciting an immune response in the respiratory tract through an intranasal boost results in a >3 log10 decrease in the lung viral loads and reduces local inflammation. Moreover, both integrative and non-integrative LV platforms display strong vaccine efficacy and inhibit lung deleterious injury in golden hamsters, which are naturally permissive to SARS-CoV-2 replication and closely mirror human COVID-19 physiopathology. Our results provide evidence of marked prophylactic effects of LV-based vaccination against SARS-CoV-2 and designate intranasal immunization as a powerful approach against COVID-19.


Subject(s)
Administration, Intranasal/methods , COVID-19 Vaccines/administration & dosage , COVID-19/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , Cricetinae , Female , Genetic Vectors , Immunity, Mucosal , Immunization, Secondary , Immunoglobulin A/immunology , Lentivirus/genetics , Lentivirus/immunology , Male , Mice , Models, Animal , Respiratory System/immunology , Spike Glycoprotein, Coronavirus/immunology , Viral Load
15.
Sci Transl Med ; 13(577)2021 01 20.
Article in English | MEDLINE | ID: covidwho-963895

ABSTRACT

Humoral immune responses are typically characterized by primary IgM antibody responses followed by secondary antibody responses associated with immune memory and composed of IgG, IgA, and IgE. Here, we measured acute humoral responses to SARS-CoV-2, including the frequency of antibody-secreting cells and the presence of SARS-CoV-2-specific neutralizing antibodies in the serum, saliva, and bronchoalveolar fluid of 159 patients with COVID-19. Early SARS-CoV-2-specific humoral responses were dominated by IgA antibodies. Peripheral expansion of IgA plasmablasts with mucosal homing potential was detected shortly after the onset of symptoms and peaked during the third week of the disease. The virus-specific antibody responses included IgG, IgM, and IgA, but IgA contributed to virus neutralization to a greater extent compared with IgG. Specific IgA serum concentrations decreased notably 1 month after the onset of symptoms, but neutralizing IgA remained detectable in saliva for a longer time (days 49 to 73 post-symptoms). These results represent a critical observation given the emerging information as to the types of antibodies associated with optimal protection against reinfection and whether vaccine regimens should consider targeting a potent but potentially short-lived IgA response.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/diagnosis , Immunity, Humoral , Immunoglobulin A/blood , SARS-CoV-2/immunology , Biomarkers/blood , Bronchoalveolar Lavage Fluid/immunology , Bronchoalveolar Lavage Fluid/virology , COVID-19/blood , COVID-19/immunology , COVID-19/virology , Case-Control Studies , Host-Pathogen Interactions , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Longitudinal Studies , Saliva/immunology , Saliva/virology , Time Factors
16.
Sci Transl Med ; 12(559)2020 09 02.
Article in English | MEDLINE | ID: covidwho-724557

ABSTRACT

It is of paramount importance to evaluate the prevalence of both asymptomatic and symptomatic cases of SARS-CoV-2 infection and their differing antibody response profiles. Here, we performed a pilot study of four serological assays to assess the amounts of anti-SARS-CoV-2 antibodies in serum samples obtained from 491 healthy individuals before the SARS-CoV-2 pandemic, 51 individuals hospitalized with COVID-19, 209 suspected cases of COVID-19 with mild symptoms, and 200 healthy blood donors. We used two ELISA assays that recognized the full-length nucleoprotein (N) or trimeric spike (S) protein ectodomain of SARS-CoV-2. In addition, we developed the S-Flow assay that recognized the S protein expressed at the cell surface using flow cytometry, and the luciferase immunoprecipitation system (LIPS) assay that recognized diverse SARS-CoV-2 antigens including the S1 domain and the carboxyl-terminal domain of N by immunoprecipitation. We obtained similar results with the four serological assays. Differences in sensitivity were attributed to the technique and the antigen used. High anti-SARS-CoV-2 antibody titers were associated with neutralization activity, which was assessed using infectious SARS-CoV-2 or lentiviral-S pseudotype virus. In hospitalized patients with COVID-19, seroconversion and virus neutralization occurred between 5 and 14 days after symptom onset, confirming previous studies. Seropositivity was detected in 32% of mildly symptomatic individuals within 15 days of symptom onset and in 3% of healthy blood donors. The four antibody assays that we used enabled a broad evaluation of SARS-CoV-2 seroprevalence and antibody profiling in different subpopulations within one region.


Subject(s)
Antibodies, Viral/blood , Betacoronavirus/immunology , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Serologic Tests/methods , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19 , COVID-19 Testing , Cohort Studies , Coronavirus Infections/epidemiology , Coronavirus Infections/immunology , Enzyme-Linked Immunosorbent Assay/methods , Female , Flow Cytometry/methods , France/epidemiology , Healthy Volunteers , Humans , Immunoprecipitation/methods , Luciferases , Male , Middle Aged , Neutralization Tests , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/immunology , SARS-CoV-2 , Seroepidemiologic Studies , Spike Glycoprotein, Coronavirus/immunology , Translational Research, Biomedical , Young Adult
17.
EBioMedicine ; 59: 102915, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-691414

ABSTRACT

BACKGROUND: The serologic response of individuals with mild forms of SARS-CoV-2 infection is poorly characterized. METHODS: Hospital staff who had recovered from mild forms of PCR-confirmed SARS-CoV-2 infection were tested for anti-SARS-CoV-2 antibodies using two assays: a rapid immunodiagnostic test (99.4% specificity) and the S-Flow assay (~99% specificity). The neutralizing activity of the sera was tested with a pseudovirus-based assay. FINDINGS: Of 162 hospital staff who participated in the investigation, 160 reported SARS-CoV-2 infection that had not required hospital admission and were included in these analyses. The median time from symptom onset to blood sample collection was 24 days (IQR: 21-28, range 13-39). The rapid immunodiagnostic test detected antibodies in 153 (95.6%) of the samples and the S-Flow assay in 159 (99.4%), failing to detect antibodies in one sample collected 18 days after symptom onset (the rapid test did not detect antibodies in that patient). Neutralizing antibodies (NAbs) were detected in 79%, 92% and 98% of samples collected 13-20, 21-27 and 28-41 days after symptom onset, respectively (P = 0.02). INTERPRETATION: Antibodies against SARS-CoV-2 were detected in virtually all hospital staff sampled from 13 days after the onset of COVID-19 symptoms. This finding supports the use of serologic testing for the diagnosis of individuals who have recovered from SARS-CoV-2 infection. The neutralizing activity of the antibodies increased overtime. Future studies will help assess the persistence of the humoral response and its associated neutralization capacity in recovered patients. FUNDINGS: The funders had no role in study design, data collection, interpretation, or the decision to submit the work for publication.


Subject(s)
Antibodies, Viral/blood , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Adult , Antibodies, Neutralizing/blood , Betacoronavirus/genetics , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/pathology , Coronavirus Infections/virology , Female , France , Health Personnel , Hospitals , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , RNA, Viral/metabolism , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2 , Serologic Tests , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL